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The motion of a Lagrange top, the suspension point of which performs vertical harmonic oscillations of arbitrary frequency and 
amplitude, is considered. The particular motion where the top rotates about a vertically positioned axis of symmetry at a constant 
angular velocity (a "sleeping" top) is investigated. The complete solution of the problem concerning the stability of such motion 
for all permissible values of the parameters of the problem is given. © 2001 Elsevier Science Ltd. All rights reserved. 

Some aspects of the motion of a Lagrange top in the case of vertical harmonic oscillations of the 
suspension point were considered earlier [1]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the motion of a Lagrange top (a dynamically symmetrical rigid body whose centre of mass 
lies on the axis of symmetry) about its suspension point O. We will assume that the point O performs 
vertical harmonic oscillations according to the law ~(t) = a .  cos l~t about a certain fixed point. 

We will introduce a translating reference frame OXYZ (the OZ axis is directed vertically upwards) 
and a reference frame Oxyz connected with the top, the axes of which coincide with the main axes of 
inertial of the top for the point O, where the Oz axis is directed along its axis of dynamic symmetry, 
and the centre of mass G lies on the positive half-axis Oz (OG = zG, Za > 0). We will specify the 
orientation of the reference frame Oxyz with respect to OXYZ using the Euler angles. 

The kinetic and potential energies of the top are calculated from the formulae [1] 

T = I m~2 _ mzc~l~ sin 0 + / A(~2 sin 2 0 + 02 ) + 2 C(~/COS 0 + ~0) 2 
2 2 

1"I = mgza  cos 0 + mg~(t)  

(1.1) 

where m is the mass of the top, andA and C are the equatorial and axial moments of inertia, respectively. 
The coordinates ~ and ,p are cyclic; denoting the constant values of the momentap~ andp~ byAf la  

and AOb respectively (a and b are dimensionless constants), we obtain from (1.1) the following 
expressions for the angular velocities of precession and natural rotation of the top 

~ ,  = a - b cos 0 ip" = A b - (a - b cos 0) cos 0 
sin 20 ' C sin 20 

where the prime denotes differentiation with respect to the variable a- = D,t. 
The investigation of the motion of the top reduces to considering a system with one degree of freedom 

with the generalized coordinate 0; the reduced Hamiltonian has the form [1] 

(1.2) H ( a - b c o s 0 )  2 I = ~- ~ (P0 - 13sin xsin 0) 2 + d cos0 
2 sin 2 0 

In (1.2),p0 is the momentum (dimensionless) corresponding to the coordinate 0, while the parameters 
13 and d are defined by the formulae 
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= a..& d = mgza 
to ' Ala2 

where lo = A/(mzG) is the reduced length of the body as a physical pendulum. The quantity 13 (13 ~> 0) 
characterizes the amplitude of  the oscillations of the suspension point, while the parameter d (d > 0) 
characterizes the position of the centre of mass of the top on the axis of symmetry. 

Suppose the values of  the constants a and b of  the cyclic integrals are related as follows: 
] a I = I b I ¢ 0. When a = b, Hamiltonian (1.2) and the differential equation of motion have the 
form 

I 20  I 
H = ~ t g  ~-+~-(po -l~sin1:sin0) 2 +dcos0 (~=a 2) (1.3) 

0"~ ~tg(O/2)  
2 cos 2 (0 / 2) + ( -d  + ~ cos ¢) sin O = 0 (1.4) 

When a = -b,  the Hamiltonian is obtained from (1.3) by replacing tg2(0/2) by ctg 2 (0/2), while the 
equation of motion is obtained from (1.4) by replacing tg(O/2)/cos 2 (0/2) by --ctg (0/2)/sin 2 (0/2). 

Equation (1.4) has the particular solution (the position of  equilibrium) 0 = 0, and the corresponding 
equation when a = -b  has the solution 0 = "rr, which correspond to motion where the top rotates about 
a vertically positioned axis of  symmetry at a constant angular velocity; when a = b, the centre of  mass 
of  the top lies above the suspension point an "inverted" top), and when a = --b it lies below this point 
("hanging" top). 

When the suspension point does not evaluate, we have the classical "sleeping" Lagrange top; the 
"hanging" top is stable, and the condition of  stability of the "inverted" top is the well-known Maiyevskii- 
Chetayev condition C 2 j  >~ 4amgz G (to is the angular velocity of  rotation of the top about the axis of 
symmetry), which in our notation has the form. 

;/4 d (1.5) 

The purpose of  the present paper  is to solve the problem of the stability of a "sleeping" Lagrange 
top (with respect to the variables 0 andpe) when there are vertical harmonic oscillations of the suspension 
point of arbitrary frequency and amplitude. 

The case when I a I = I b I = 0 corresponds to motion of  the top as a physical pendulum. The 
problem of the stability of  the relative equilibria of a mathematical pendulum on the vertical in the 
case of vertical harmonic oscillations of its suspension point was solved earlier [2]. 

Putting 0 = q in (1.4) and 0 = ,rr + q in the corresponding equation for the case when a = -b ,  we 
obtain the equations of perturbed motion. If, in the second of these equations, 1- is replaced by ~" + ~r, 
and d is replaced by--d, the equations of perturbed motion (for the cases a = b and a = -b)  are vertical. 
Therefore, it is sufficient to consider Eq (1.4) and the stability of  its equilibria 0 = 0, assuming the 
13 > 0 and - ~  < d < + ~. When 13 > 0 and d > 0, the conclusions will relate to the "inverted" top 
(a = b), and when 13 > 0 and d < 0, they will relate to the "hanging" top (a = -b). 

In (1.3) we carry out a canonical univalent replacement of  the variables 0,p0 --~ q,p by means of the 
formulae q = 0 and p = P0 - 13 sin ~" sin 0. The Hamiltonian then becomes 

H=-~I p2 + ( d _ ~ c o s x ) c o s q + 2  ~tg2 -~q (1.6) 

In the vicinity of the equilibrium position q = 0,p = 0, we expand expression (1.6) in series in powers 
of  q and p 

H = H2 + H4 + . . .  (1.7) 

__._1 ( a _  3 ;  + 13cos, c q4; 1 ! 2+/ (°~+13c°s '0q2 '  / / 4=  2 4 \  4 ) ~ ;  d H 2 = ~ ' p  0~= - 

Since ~ > 0, then, for the "hanging" top (d < 0) the parameter et is always positive; for the "inverted" 
top (d > 0), however, --~ < et < + ~, and here, according to (1.5), the inequality a ~> 0 is the condition 
of  stability of  such a top in the classical case. We will consider the problem of the stability of the 
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equilibrium position q = 0,p = 0 of a system with Hamiltonian (1.7), for all permissible values of the 
parameters et, B and ~. Then, using the last relation of (1.7), it is possible, instead of ~, to change to 
the parameter d and to interpret the conclusions obtained concerning the stability as it applies to the 
"inverted' top (d > 0) or the "hanging" top (d < 0). 

2. STABILITY IN THE L I N E A R  A P P R O X I M A T I O N  

The linearized equations of motion of the system with Hamiltonian (1.7) reduce to a Mathieu equation 
of the form 

q" + (0t + ~l cos x)q : 0 

The problem of the stability of the solution q = 0 of Eq. (2.1) has been conjugated in detail; brief 
information [3-5] that will subsequently be needed will be given. 

Let  X(¢) = IIx0('0 II j= 1 (x2a -- xaa, x22 = x i 9  be the fundamental matrix of solutions of the linearized 
system, described by the Hamiltonian//2 [see (1.7)], which satisfies the condition X(0) = E, where E 
is the identity matrix. The functions xll ('r) and x22('r) are even, while x12('0 and x21('r) are uneven with 
respect to x. The characteristic equation of the linearized system has the form 

p2-2Ap + 1 : 0 ,  A =xll(2x)=x22(2n) (2.2) 

Figure 1, in the plane of the parameters (a, I~) (--~ < ot < +0% 13 >~ 0), shows the regions of stability 
and instability of the zero solution of Eq. (2.1). In the shaded regions, one of the roots of the characteristic 
equation (2.2) is greater than unity in modulus, and we have instability (not only in the linear problem 
but also for the complete system of equations of perturbed motion, which follows from Lyapunov's 
theorem of stability in the first approximation [6]). 

In the unshaded regions, the roots of Eq. (2.2) are complex-conjugate and have moduli equal to unity, 
i.e. the conditions of stability in the linear approximation are satisfied. We will denote by gn (n = 1, 
2 .. . .  ) the region of stability which, as 13 ~ 0, passes into the interval (n - 1)2/4< a < n2/4 of the 13 axis. 
The characteristic indices +-ik(k > 0) in the regions gn are purely imaginary, and the quantity k is 
determined from the relation cos2~rk = A(I A [ < 1). 

All regions of stability intersect the a = 0 axis and, as 13 increases, become very narrow; the slope of 
the curves bounding them approaches -1 as 13 -+ +oo. 

0 1/4 9/4 4 25•4 ct 

Fig. 1 
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The curvilinear boundaries of the regions of stability and instability emanate in pairs from the points 
ct = n2/4 (n = 1, 2 . . . .  ) of the axis 13 = 0; for small 13, these pairs of curves have a tangent of the order 
of n - 1. We will use ~/~2,-2), .¢~2,-1)and ~/(2,-1), .y~2k)t o denote the boundaries of the regions gzk-1 and 
g2k (k = 1, 2 . . . .  ), respectively. On the curves ~ ) ,  ~/~2k) and ~2k)(k = 1, 2, . . . )  we have first-order resonance 
(the roots Pl and P2 of Eq. (2.1) are equal to unity), and on the curves ~2k-D and ~/~2k-1) (k = 1, 2 . . . .  ) 
we have second-order resonance (Pl = P2 = -1). 

The elements of the fundamental matrix of the linearized system of equations of perturbed motion 
for points of the boundary curves ~/~'~) (m = 0, 1, 2, ...) are determined by an even Mathieu function 
of the first kind and by the corresponding Mathieu function of the second kind and for points of the 
curves ~/~m) (m = 1, 2 . . . .  ) by an odd Mathieu function of the first kind and the corresponding Mathieu 
function of the second kind. The Mathieu functions of the first kind are 2~r-periodic in ~r for even values 
of m, and 4~r-periodic in "r for odd values of m, while the Mathieu functions of the second kind are 
non-periodic and unbounded. Therefore, on the boundary curves, the overall solution of the linearized 
system of equations is unbounded, and the equilibrium position considered is unstable in the linear 
approximation. 

The following sections give a rigorous solution of the problem of stability within the regionsg~ of stability 
in the linear approximation and on the boundary curves. Methods and algorithms developed in previous 
studies [7-10] are used, as well as certain relations obtained [2] by solving the problem of the stability 
of the relative equilibrium positions of a pendulum with vertical oscillations of the suspension point. 

3. A N A L Y S I S  O F  S T A B I L I T Y  I N  T H E  R E G I O N S  GN.  
T H E  N O N - R E S O N A N T  C A S E  

We will first consider the problem of the stability of a system with Hamiltonian (1.7) for ot and 13 values 
within the regions g,, of stability in the linear approximation. For this, using a series of canonical 
transformations, we will reduce the Hamiltonian of the perturbed motion to the normal form. 
Using the linear canonical replacement, 2.tr-periodic in % of the variables q ,p  --> q . ,p ,  of the form [9]. 

q = n, ,  ('c)q. + n 12 ( x ) p . .  q = n2; ( x ) q .  + n22 (x)p. 
nil ('g) = _t/~ (~ti cos  ~,1: + V i sin ~,X), hi2 (X) = x - ½  (-l.t  i sin ~,X + V i cOS ~,'g) (3.1) 

~t i = sin 2/g~i2(17), Vi = -Xj2(2n)XiI(X), i : i, 2 

X = xl2(2n)sin 2gk > 0 

the quadratic part of Hamiltonian (1.7) is transformed into the normal form h(q 2 • + p2)/2, and the 
Hamiltonian will take the form 

3 +~cosx)(nltq * +06 H = 2 X ( q 2 * + P 2 * ) - - ~ 4 ( O ~ - ~  + n;;~p.) 4 (3.2) 

where 06 is a set of terms no lower than the sixth power in q. and p,. 
The quantity h is determined from the relation cos 2"irk = A; to eliminate the ambiguity of this 

definition, we will assume that h = x/-& when 13 = 0, and take into account the _~roperty of continuity of 
the characteristic exponents with respect to 13. Then, we obtain that h = (2~r)- arccosA + k - 1 in the 
regions g2k-1 and that h = -(2"tr) -1 arccosA + k in the regions g2~ (k = 1, 2 . . . .  ). 

Suppose that, to begin with, fourth-order resonance does not occur in the system, i.e. the quantity 
4k is not an integer. A fourth-order resonance curve does exist, and only one, in each of the regions 
gn (n = 1, 2 . . . .  ). On this curve, 4k = 2n - 1, and it emanates from the point ~t0 = (2n - 1)2/16 of the 
13 = 0 axis for small 13 it is given by the equation 

c~ = ~ + 132/(2(aao _ 1)) + 0(I 34) 

and, as 13 increases it extends without limit into the regions gn. The fourth-order resonance curves are 
shown in Fig. 1 by the dashed lines. 

Using a canonical replacement of the variables q . ,p .  --> x, y of the Birkhoff transformation type that 
is near-identical, real, 2"tr-periodic in "r, and analytical in x, y, Hamiltonian (3.2) can be reduced to the 
form 
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i ~,(X 2 + y 2 ) + l c 2 ( x : ~  +y2)2 + O  6 
(3.3) 

where the constant coefficient c2 is calculated by means of the formula [9] (below, with the exception 
of Section 5, integration with respect to "r is always carried out over the range from 0 to 2~r) 

c i = -  j" i x -  ; + 1 3 c o s x  (hi21 +n122)2d1: (3.4) 
321t 

If c2 # 0, then, by the Arnold-Moser  theorem [7, 8], we have stability. 
Taking into account that the functions p.i(x) and vl('r) occurring in the expressions for n u  and hi2 (see 
(3.1)) satisfy Mathieu's equation (2.1), by transforming the right-hand rule of (3.4) we obtain 

i [(ix;v ' , 2  , , 2  + v,v;)2 _ ¼;( t,2 + v2) ]a x C2=-32"~'~2 f +l ,  t lV l )  +(ILI. I IXI--VlVl)  +2(IXlp,;  (3.5) 

For fixed values of the parameters ct and 13, the coefficient ¢2 vanishes if 

= ~*(ix, 9)  = 4 j" [(IX;v I + lXiV;)2 + (iXlls; - v i v ; )  z + 2(IXIIX; + v l v ; )  2 ]dx (3.6) 

Thus, each point (~t, 13) belonging to one of the regions g, of stability in the linear approximation 
(besides the points of the resonance curves) has its corresponding unique point ~ = ~.(tx, 13) where the 
condition of non-degeneracy c2 # 0 of Hamiltonian (3.3) is violated. 

We will first consider the case when 13 ,~ 1 (the amplitude of oscillations of the suspension point of  
the top is small). Following the algorithm from [4], we can write the elements of the fundamental matrix 
X('r) for points of the curve ~ = ~t 0 + 132/(2(4ot0 - 1)) + O(13 4) (emanating from the point 
a = ot o (eto ~ k2/4, k = 0, 1, 2 . . . .  ) of  the 13 = 0 axis), on which A = cos 2"trx~0. Then, carrying out a 
series of transformations using formulae (3.1) and (3.6), we obtain that, in the case of small 13, the 
condition of non-degeneracy is violated when 

_4_r<= .1+ o ( f i  3 ) - 3"  L o 2(4ix o - l ) j  

For arbitrary values of 13, relation (3.6) specifies the  equation of a surface in parameter  space 
(a, 13, 0 .  This surface consists of a denumerable number of "pieces" corresponding to the regions gn 
of the (or, 13) plane. The boundaries of these "pieces" in the (13 = 0) plane are segments of the straight 
line ~ = 4cd3 with (n - 1)2/4 < a < n2/4 (n = 1, 2, ...). The surface ~ = ~.(ct, 13) was constructed using 
a computer; the form of this surface is shown in Fig. 2. Calculations show that, within each "piece", 
the function ~ = ~.(et, 13), for a fixed value of 13, increases monotonically as increases, but as 13 increases 
the value of ~. increases without limit. 

We will now consider the interpretation of the results in the parameter  space (et, 13, d). The condition 
of non-degeneracy is violated when d.((ot, 13) = ~.((ot, 13)/4 - ~c Calculations show that, for all points 
(et, 13) from the regions g,, when n >I 2, we have d. < 0. Therefore, in the regions indicated, the "inverted" 
top (d > 0) is stable for all values of d; the "hanging" top (d < 0, ot > 0) is also stable, with the possible 
exception of the points d = d.(ot, 13). 

In the region gl (Fig. 3) a curve exists (indicated by the dot-dash curve) on which d. (a ,  13) = 0; this 
curve emanates from the point (0, 0) and for small 13, is given by the equation et = 2132 + O(133); it 
intersects the boundary curve ~/~) at the point B(0.103, 0.28). For the points (a, 13) belonging to the 
curve d. = 0, the stability condition is satisfied for all values d ,  0, i.e. both for the "inverted" and for 
the "hanging" top. For points of the region gl situated to the right of the curve d. = 0, we have 
d. < 0 (the condition of non-degeneracy is violated for the "hanging" top), and for points to the left 
of this curve we have d° > 0 (the condition of non-degeneracy is violated for the "inverted" top). 
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Ct 

Fig. 2 

0 II16 I/4 ct 

Fig. 3 

4. S T A B I L I T Y  ON F O U R T H - O R D E R  R E S O N A N C E  C U R V E S  

Suppose, now, that the point (ct, 13) belongs to a fourth-order resonance curve. The non-linear canonical 
replacement of  variables q . ,p .  ~ x ,y  transforms Hamiltonian (3.2) into 

= / X(x2 + y2 ) + / c2 (x 2 + y2)2 + (x4o cos 4kx - Y4o sin 4~,z)(x 4 - 6x2y 2 + y4 ) _ H 
2 

--4(y4o cos 4Xx + x4o sin 4~.'c)xy( x 2 - y 2 ) + 06 

where the coefficient Cz is defined by (3.5), and the constants x40 and Y40 are given by the expressions 

X4o=S (X~cos4~,x+x2sin4X'c)dx,  Y4o=~ (-xIsin4~,X+XzCOS4X'c)dx 

1 2 
X, = - ~ Z o I ( n , ,  + n~2 )~ - 8n~ln~2 ], X2 = Xon, ,n,2(n?, - n~z ) (4.1) 

yo~ \ 4 y 

The equilibrium position q = 0,p = 0 of the system with Hamiltonian (1.7) is stable when the condition 
I c2 [ > 4(x20 + y~0) 1/2 is satisfied, and unstable otherwise [9]. 

Substituting expressions for nll and nlz from (3.1) into (4.1), we obtain 

I I _ I j t4M2v~_(i.t2_v2)Xo]d.L Y40 :~-~" l't,v,(lxl 2 -vlZ)Xo d'c x40 - 4x2 
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Since the integrand in the expression fory40 is odd, we have 5'4o = 0, and the stability condition will 
take the form I c2 I > 41 x40 I. Taking into account (3.1) and Mathieus equation (2.1), we transform 
the expression for X4o into 

= I [4~t12V~ - (~t12 - V~)2 ] dx 
512rex 2 

(4.2) 

The  boundary of the stability region is defined by the equation c 2 = +4X40. The equation c2 = 4x40, 
taking (3.5) and (4.3) into account is transformed into 

= ~ l (a ,  13) = 4 j" [(It;v= + I . t ,v;)  2 + (I.td.t; + v j v ; )2 ]d l :  
I (IxJ 4 + v4 + 61.t~v~)d'c 

(4.3) 

and the equation C 2 = 4X40 becomes 

;= ;2(a, 13)= 4 -[ (~t~la;  2 + v~v;2)dx 
]" or; + vDa  

(4.4) 

Relations (4.3) and (4.4), on the resonance surfaces defined in parameter  space (a, 13, ~) by the 
equations 4h = 2k - 1 (k = 1, 2 . . . .  ) specify space curves, on passing through which the nature of the 
stability of the equilibrium position considered changes. 

For small values of 13, the quantities ~1 and ~2 have the form 

4 [  3~ 2 ]+O(~3) ,  0~o ( 2 k -  l) 2 
~1,2 = '~  ao 2(4a 0 - I) = 1"---"~--- 

(k = 1,2 .... ) 

Their  principal parts (to terms of the order o f  132 inclusive) are identical. 
The  curves gl (a, 13) and g2(a, 13) emanate  from the common limit point (et0, 0, 4a0/3) where they 

have a common tangent. For all remaining points (et, 13) (13, 0) of the resonance curves, as shown by 
calculations, gl < g2, The qualitative form of the curves g = gl(a, 13) and g = g2 (a, 13) is shown in 
Fig. 4 for one of the resonance surfaces. As 13 increases, the difference ~2 - gl decreases, and for large 
values of 13 the curves ~ = gl(et, 13) and g = g2(a, 13) converge without limit. 

Suppose the point (et, 13, g) belongs to a resonance surface. If ~ < gl(et, 13) or ~ > g2(a, 13) in this case, 
we have I c2 I > 41 x4o I, and the stability condition is satisfied; if, however, gl(et, 13) < ~ < g2(a, 13), 

Fig. 4 
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the opposite inequality holds and we have instability. The instability region on the resonance surface 
in Fig. 4 is shaded, and outside this region we have stability. 

The quantities di = [d 4 - a (i = 1, 2) corresponding to [1 and [z for the points (or, 13) of the resonance 
curves lying in the regions g~ (n ~> 2) are negative for all et and 13, and therefore an instability region 
dl < d < d2 exists only for the "hanging" top (at those points where a > 0); the "inverted" top on these 
resonance curves is always stable. 

For the resonance curve 4k = 1 in the region gl (Fig. 2, the dashed curve), we have dl = 0 at the 
pointAl(0.036, 0.205) and d2 = 0 at the point A2(0.042, 0.175). For points of the curve 4k = 1 to the 
left and above the pointA1, we have dl > 0, d2 > 0, and an instability region dl < d < d2 exists for the 
"inverted" top, while the "hanging" top is stable. For points of the curve 4k = 1 to the right and below 
the point A2, we have dl < 0, d2 < 0, and an instability region exists for the "hanging" top, while the 
"inverted" top is stable. Finally, for points of the resonance curve lying between the points A1 and Az, 
dl < 0, d2 > 0 and an instability region exists both for the "hanging" top (dl < d < 0) and for the 
"inverted" top (0 < d < d2). 

5. I N V E S T I G A T I O N  O F  S T A B I L I T Y  ON T H E  B O U N D A R Y  C U R V E S  

We will now consider the case where the parameters et and 13 belong to boundary curves. Using the 
linear, real, canonical replacement q, p ---> q , ,p . ,  given by the relation 

II qp U r =  N('0 II q.P. II r ,  N(x) =11 no (x)II (5.1) 

Hamiltonian (1.7) is reduced to the form 

H=28p2, - l ( o t - - ~  ~cosx))(n,,q. +n,2P.)" +06 (5.2) 

where ~ is equal to 1 or to -1, and, along each boundary curve, retains a constant value. 
The simplex matrix in (5.1) is 2"rr-periodic in "r for points of the curves -t~ ~) a n d ~ . ~  ) (where first- 

order resonance occurs) and 4~r-periodic in "r for points of  the curves ~/~z~-t) and ~ - ) (with second- 
order resonance). The explicit form of this matrix was indicated earlier [2]. For subsequent investigation, 
only the function nll(a') will be required. We will give its form and also the value of  the constant 8 for 
points of each of  the boundary curves [2]: 

for points of  the curves ~/b~ (k = 0, 1, 2 . . . .  ) 

8=1,  nll=bxtt(x), b=(Ixl2(2n)l/(2x)) ½ 

for points of  the curves ~/~z~) (k = 1, 2 . . . .  ) 

(5.3) 

8 =-1, nal =-cxl2(x), c = (I x21(2n) I/(2x)) ~ (5.4) 

for points of the curves ,~/~2k-1) and ,~/~2k-1) (k = 1, 2 . . . .  ), the values of B are equal to I and-1 respectively, 
and the functions nn('r) are obtained from formulae (5.4) and (5.3) respectively in which 2"tr is replaced 
by 4-tr. 

In relations (5.3) and (5.4) and analogous relations for the curves ~/~Z~-l) and ~bz~-l), the functions 
xo (a') are elements of  the fundamental matrices of solutions of Mathieu's equation (2.1) on the boundary 
curves (see Section 2). 

A non-linear canonical replacement of variables q., po ---> x, y (2"rr-periodic in "r for the curves ~/~z~) 
and ~/~z~), and 4"it-periodic in a" for the curves ~/~z~-l) and ~/~-1)) transforms Hamiltonian (5.2) into the 
following normal form [10] 

H - - 2 8 y  2 +a4 x4 +06  (5.5) 

where a 4 is a constant coefficient. If a4~ > 0, the solution q = O,p = 0 of the system with Hamiltonian 
(1.7) is stable, but if a48 < 0 it is unstable [10]. 

The coefficient a4 is given by the relation 
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a4 = - 1 ,  j.(a_3~+l~cosl:~nadx (5.6) 
4 ~ r  o k ~ / 

where s = 1 for the curves ~/~2,t) and ~t~ zt) and s = 2 for the curves ~/~2~-,) and ~/b2t-,). 
Taking into account that the function nil(x) in (5.6) satisfies Mathieu's equation (2.1), we transform 

the expression for a4 into 

2~ 2gs ~ 4 
= - ~  nj~n;~d'~+ 

a4 16ns o 64~ts 0 

Whereas the sign of ~ of each boundary curve is retained, the sign of the coefficient a~ at each point 
(a, I~) of the boundary curve depends on the value of the parameter  [: if [ = [ . . (a ,  13), then a~ = 0; if 
0 < [ < ~.,, then a4 < 0; if ~ > [.. ,  then aa > 0. Here 

(5.7) 

On the left-hand boundaries of the stability regions (curves ~/~2k) and ~/~2k-1)) B = 1; for points of these 
curves when 0 < [ < [ . .  we have a4 < 0, and the solution considered is unstable, but when [ > [ . .  we 
have a4B > 0, and the solution is stable. On the right-hand boundaries of the stability regions (curves 
~2k) and T~2k-1)) ~ = -1, and, conversely, when 0 < [ < [, .  we have stability (a45 > 0), but when 

> [. .  we have instability (a4~ < 0) of the solution. 
Relation (5.7) specifies the equations of the curves separating the stability and instability regions on 

the boundary surfaces corresponding in parameter  space (a, 13, 4) to the boundary curves considered. 
For small values of 13 (small amplitudes of oscillations of the suspension point of  the top), (5.7) is 

transformed as follows: 
When k ~ 1 for all boundary points ~/~2k), TIn,), T~2~-~) and T~2~-~) 

4 [  3[~ 2 ] +  O([~3) 
~**='3 a °  2(4a o - ! )  

where an represents the abscissae of the point on the 13 = 0 axis from which the boundary curves emanate 
(ao = kZfor 7b 2~) and .y~2k), and ao - (2k - 1)2/4 for ~/~2k-1) and ~t~2k-1)); 

when k = 1 

~., 4 41B2+0(133 ) 
=3 ~'- 

4 5 ,,2 +O(133) 

= 3  9 -  5 4 -  O(1~3) 

I 2 ^ 11 ^2 +O(l  3) 

for curve y~) 

for curve 7~ 2) 

for curve 7~ 

for curve 

For arbitrary values of 13, the qualitative form of the curves (5.7) is shown in Fig. 5 on two boundary 
surfaces (corresponding to the boundary curves in the (a, 13) plane emanating from the common point 
(a~ 0) (a0 = n 2/4, n = 0, 1, 2 . . . .  ) of the axis 13 -- 0). The common limit point (at 13 = 0) of these 
curves has the coordinates (oL~ 0, 4a0/3); when 13 increases, the functions ~ -- ~**(a, 13) increase without 
limit. 

On the fight-hand boundary surface of those shown in Fig. 5 (corresponding to the left-hand boundary 
of stability in the (~, 13) plane), the equilibrium position q -- 0, p = 0 of  the system with Hamiltonian 
(1.7) is stable for points (a, 13, ~) above the curve ~ = ~..(a, 13), and unstable for points below this curve. 
On the left-hand boundary surface (corresponding to the right-hand boundary of the stability region 
in the (a, 13) plane, on the other hand, for points above the curve ~ -- ~..(a, 13) we have instability, and 
for points below this curve we have stability. The instability regions on the boundary surfaces in Fig. 5 
are shaded. 
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IX 

Fig. 5 

We will now recalculate the results with respect to parameter d. As shown by calculations, the quantity 
d..(a, 13) = ~**(a, 13)/4 - et corresponding to ~..(a, 13) is negative for all points (et, 13) belonging to all 
boundary curves, except for -y~) and ~/~) (the boundaries of the region gl). For points of the curve ~/~9 ) 
(Fig. 3) we have d ° . >  0 (apart from the limit point (0, 0), where d.. = 0); for points of the curve ~/~) 
that lie to the left of the point B (where d** = 0) we have d.. > 0, and for points of this curve to the 
right of the point B we have d** < 0. 

Therefore, on all the left-hand boundaries of the regions g, (apart from ~/~)) the "inverted" top is 
stable, bUt on all the right-hand boundaries (apart from ~/~)) it is unstable. On the boundary curve ~/~) 
the "inverted" top is unstable when 0 < d < d** and stable when d > d**. On the curve 7~), for points 
to the right of the point B (Fig. 3) the "inverted" top is unstable; for points of this curve to the left of 
the point B the top is unstable when - < d < d** and stable when d > d... 

The "hanging" top on all the left-hand boundaries of the regions gn (for points where a > 0) is stable 
when d** < d < 0 and unstable when d < d**. On the boundary ~ 3  the "hanging" top is stable for 
points to the left of the point B (when a > 0); for points of this curve to the right of the point B, and 
also for all remaining right-hand boundaries of the regions gn (when a > 0) the "hanging" top is stable 
when d < d., and unstable when d** < d < 0. 

6. C O M P A R I S O N  WITH THE CLASSICAL R E S U L T  

As indicated in Section 1, the classical "hanging" top is stable in the region of existence a > 0, and the 
"inverted" top is stable when a >~ 0 and unstable when ~t < 0, In both cases, the points of the positive 
half-axis Oa correspond in Fig. 1 to the stability condition. 

When there are oscillations of the suspension point in the (et, 13) parameter plane, a denumerable 
number of stability and instability regions are distinguished for both the "hanging" and the "inverted" 
top. For the "hanging" top these regions lie in the half-plane a > 0, and for the "inverted" top each 
of the stability (and instability) regions, starting in the region of positive values of et, intersects the 
ot = 0 axis (the boundary of stability for the classical top) and extends without limit towards negative 
values of et (although the stability regions when a < 0 are extremely narrow). 

Purthermore, the existence of instability regions on the resonance surfaces (in the space of the three 
parameters of the problem) and also the diversity of conclusions concerning stability on the boundary 
surfaces make the picture of stability of a "sleeping" top considerably richer and more complex compared 
with the classical result. 
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